cnsply 发表于 2019-12-4 10:36:50

新方法预测细菌耐药性基因,准确率高

美国华盛顿州立大学研究人员研发出一种新方法来预测细菌耐药性基因,通过机器学习和博弈论模型,他们能以93%—99%的准确率,预测3种不同类型革兰氏阴性菌中耐药基因的存在。油泵

细菌对抗菌素的耐药性已成为影响全球公共健康的重要问题,威胁着亿万人群,仅每年美国就有数百万人感染耐药细菌,导致成千上万人死亡。近年来,科学家一直在努力寻找预测、识别抗菌素耐药性基因的手段,以求更有效地对病患施药。随着全基因组测序技术的突破,他们开发出序列比对方法,通过序列相似性来鉴定抗菌素耐药性基因,但已知遇到的抗菌素耐药性基因具有高度相似性的序列时,这些方法则有些无济于事。转子泵

此次,华盛顿州立大学研究团队决定使用博弈论来帮助识别、预测抗菌素耐药性基因。博弈论是当前经济学的标准分析工具之一,是一种研究具有竞争或斗争现象的数学理论和方法。在博弈模型中,一个参与者的行为会影响和取决于其他参与者的行为。液下泵

研究团队使用其开发的机器学习博弈论模型和算法,不止对细菌基因组中简单的序列相似性进行分析,还深入研究了蛋白质序列结构、进化特征、理化特征、组成特征等多个特征的相互作用,以求准确预测抗菌素耐药性基因。在9日的《科学报告》上他们发表研究论文称,使用新方法预测3种革兰氏阴性菌——肠杆菌、假单胞菌和弧菌的抗菌素耐药性基因序列,其准确度达到93%—99%。卫生泵

研究人员表示,这种新颖的博弈论方法特别强大,其将基因特征的相互依赖性和相关性综合考虑,根据它们在整体上协同工作的能力来识别可能的抗菌素耐药性基因,因而能够鉴定出以前通过简单序列比对方法无法识别的推定抗性基因。随着现有测序基因组数量的增加和抗菌素耐药性的增长,急切需要开发新的、更准确的耐药基因识别、预测工具,而他们的研究表明,机器学习模型将是一个重要研发方向。
页: [1]
查看完整版本: 新方法预测细菌耐药性基因,准确率高